organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Chloro-6-[2-(cyclopentylidene)hydrazin-1-yl]pyridazine

Abdul Qayyum Ather,^{a,b} M. Nawaz Tahir,^c* Misbahul Ain Khan^a and Muhammad Makshoof Athar^d

^aDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, ^bApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan, ^cDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and ^dInstitute of Chemistry, University of the Punjab, Lahore, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 20 March 2011; accepted 27 March 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.050; wR factor = 0.120; data-to-parameter ratio = 13.2.

The asymmetric unit of the title compound, $C_9H_{11}ClN_4$, contains two virtually planar molecules that differ in conformation about the bond connecting the hydrazine and pyridazine units. The 3-chloro-6-hydrazinylpyridazine and cyclopentane groups are oriented at dihedral angles of 4.5 (3) and 8.8 (4) $^{\circ}$ in the two molecules. In the crystal, the molecules form a one dimensional polymeric structure extending along the *a* axis via $N-H \cdots N$ hydrogen bonds. The crystal stucired was an inversion twin [ratio of the twin domains = 0.73 (9):0.27 (9)].

Related literature

For related structures, see: Ather *et al.* (2010a,b,c). For graphset notation, see: Bernstein et al. (1995).

Experimental

Crystal data

 $C_9H_{11}CIN_4$ $M_r = 210.67$ Orthorhombic, Pca2, a = 10.180(5) Å b = 9.870(5) Å c = 20.049 (3) Å

V = 2014.5 (15) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.34 \text{ mm}^-$ T = 296 K $0.30 \times 0.15 \times 0.14 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\rm min} = 0.942, \ T_{\rm max} = 0.950$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained
$wR(F^2) = 0.120$	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
S = 1.00	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
3355 reflections	Absolute structure: Flack (1983),
254 parameters	1307 Friedel pairs
1 restraint	Flack parameter: 0.73 (9)

7740 measured reflections

 $R_{\rm int} = 0.044$

3355 independent reflections

2130 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3A\cdots N5^{i}$ $N3-H3A\cdots N6^{i}$ $N7-H7\cdots N1^{ii}$	0.86 0.86 0.86	2.52 2.27 2.19	3.295 (5) 3.088 (5) 3.041 (5)	150 159 170

Symmetry codes: (i) -x + 1, -y + 1, $z + \frac{1}{2}$, (ii) $-x + \frac{1}{2}$, y + 1, $z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Bana International, Karachi, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2360).

References

- Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010a). Acta Cryst. E66. o2107
- Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010b). Acta Cryst. E66, o2441.
- Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010c). Acta Cryst. E66 o2499
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2011). E67, o1020 [doi:10.1107/S1600536811011342]

3-Chloro-6-[2-(cyclopentylidene)hydrazin-1-yl]pyridazine

A. Q. Ather, M. N. Tahir, M. A. Khan and M. M. Athar

Comment

In continuation to on our studies on 3-chloro-6-hydrazinylpyridazine derivatives (Ather *et al.*, 2010*a*,*b*,*c*), the title compound (Fig. 1) is being reported here.

There are two symmetry independent molecule in the asymmetric unit of title compound that differ in conformation. In one molecule 3-chloro-6-hydrazinylpyridazine moiety A (C1—C4/N1—N4/CL1) and cyclopentane group B (C5–C9) are planar with r. m. s. deviations of 0.0104 and 0.0354 Å. The dihedral angle between A/B is 8.5 (4)°. In the second symmetry independent molecule 3-chloro-6-hydrazinylpyridazine moiety C (C10—C13/N5—N8/CL2) and cyclopentane gruop D (C14–C18) are also planar with r. m. s. deviations of 0.0068 and 0.0046 Å. The dihedral angle between C/D is 4.5 (3)°. The title compound consists of one dimensional polymeric chains via N–H…N hydrogen bonds extending along the crystallographic *a*-axis (Table 1, Fig. 2).

Experimental

3-Chloro-6-hydrazinylpyridazine (0.5 g, 3.46 mmol), dissolved in ethanol (10 ml) and refluxed for 15 min. Cyclopentanone (0.291 g, 3.459 mmol) was added to the formar solution and refluxed about 3 h, till the completion of reaction monitored through TLC. On completion of the reaction mixture was concenterated under vacuum. The crude product was recrystallized in ethanol which yielded the light yellow needles of the title compound.

Refinement

The structure was refined as an inversion twin with 0.73 (9):0.27((9) ratio of the twin domains. The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.2 for all H-atoms.

Figures

Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.

Fig. 2. The partial packing diagram (*PLATON*; Spek, 2009) showing polymeric chains extending along the *a*-axis. The H-atoms of cyclopentane are omitted for clarity.

3-Chloro-6-{2-[cyclopentylidene]hydrazin-1-yl}pyridazine

Crystal data

C9H11ClN4
$M_r = 210.67$
Orthorhombic, Pca21
Hall symbol: P 2c -2ac
a = 10.180 (5) Å
<i>b</i> = 9.870 (5) Å
c = 20.049 (3) Å
$V = 2014.5 (15) \text{ Å}^3$
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer	3355 independent reflections
Radiation source: fine-focus sealed tube	2130 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.044$
Detector resolution: 7.60 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$
ω scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$k = -12 \rightarrow 11$
$T_{\min} = 0.942, T_{\max} = 0.950$	$l = -24 \rightarrow 19$
7740 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained
$wR(F^2) = 0.120$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.053P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{max} < 0.001$
3355 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
254 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
1 restraint	Absolute structure: Flack (1983), 1307 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.73 (9)

F(000) = 880 $D_{\rm x} = 1.389 {\rm Mg m}^{-3}$

 $\theta = 2.9 - 28.3^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$ T = 296 K

Needle, light yellow $0.30 \times 0.15 \times 0.14 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 1374 reflections

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds

in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.05268 (12)	-0.05719 (13)	0.64742 (7)	0.0730 (4)
N1	0.2266 (4)	-0.1211 (3)	0.5585 (2)	0.0563 (10)
N2	0.3221 (4)	-0.1007 (3)	0.5124 (2)	0.0540 (10)
N3	0.4576 (4)	0.0479 (3)	0.4564 (2)	0.0564 (10)
H3A	0.4848	0.1290	0.4488	0.068*
N4	0.5125 (4)	-0.0589 (3)	0.4229 (2)	0.0576 (10)
C1	0.3608 (4)	0.0263 (4)	0.5012 (2)	0.0403 (10)
C2	0.3031 (4)	0.1383 (4)	0.5338 (2)	0.0495 (11)
H2	0.3302	0.2261	0.5240	0.059*
C3	0.2085 (4)	0.1165 (4)	0.5791 (2)	0.0489 (12)
Н3	0.1686	0.1871	0.6022	0.059*
C4	0.1736 (4)	-0.0193 (4)	0.5896 (2)	0.0490 (12)
C5	0.5972 (5)	-0.0292 (4)	0.3777 (3)	0.0553 (12)
C6	0.6610 (5)	-0.1391 (5)	0.3385 (3)	0.0860 (17)
H6A	0.7147	-0.1958	0.3671	0.103*
H6B	0.5955	-0.1954	0.3169	0.103*
C7	0.7435 (8)	-0.0690 (6)	0.2881 (4)	0.112 (3)
H7A	0.8349	-0.0934	0.2945	0.134*
H7B	0.7175	-0.0972	0.2436	0.134*
C8	0.7283 (7)	0.0760 (6)	0.2945 (4)	0.101 (2)
H8A	0.6859	0.1125	0.2551	0.121*
H8B	0.8137	0.1187	0.2991	0.121*
C9	0.6450 (4)	0.1042 (4)	0.3559 (2)	0.0574 (12)
H9A	0.6972	0.1466	0.3906	0.069*
H9B	0.5720	0.1634	0.3449	0.069*
C12	0.72267 (11)	0.48307 (11)	-0.15057 (7)	0.0678 (4)
N5	0.5643 (3)	0.6264 (3)	-0.07810 (19)	0.0544 (10)
N6	0.4710 (3)	0.6489 (3)	-0.03214 (19)	0.0512 (9)
N7	0.3193 (3)	0.5761 (3)	0.04280 (19)	0.0527 (10)
H7	0.2969	0.6590	0.0495	0.063*
N8	0.2597 (4)	0.4729 (3)	0.0777 (2)	0.0555 (11)
C10	0.4144 (4)	0.5451 (4)	-0.0025 (2)	0.0444 (11)
C11	0.4524 (4)	0.4099 (4)	-0.0162 (2)	0.0471 (11)
H11	0.4124	0.3377	0.0057	0.056*
C12	0.5459 (4)	0.3885 (4)	-0.0607 (2)	0.0466 (11)
H12	0.5744	0.3014	-0.0710	0.056*
C13	0.6001 (4)	0.5023 (4)	-0.0916 (2)	0.0464 (11)
C14	0.1787 (4)	0.5052 (4)	0.1230 (3)	0.0533 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

0.1343 (4)	0.6416 (4)	0.1458 (3)	0.0658 (12)
0.0928	0.6908	0.1096	0.079*
0.2080	0.6943	0.1622	0.079*
0.0371 (6)	0.6142 (7)	0.2012 (3)	0.105 (2)
0.0666	0.6569	0.2421	0.125*
-0.0480	0.6515	0.1896	0.125*
0.0264 (7)	0.4674 (7)	0.2109 (4)	0.095 (2)
0.0509	0.4442	0.2562	0.114*
-0.0637	0.4389	0.2038	0.114*
0.1122 (5)	0.3979 (5)	0.1643 (3)	0.0870 (19)
0.0617	0.3377	0.1359	0.104*
0.1770	0.3446	0.1882	0.104*
	0.1343 (4) 0.0928 0.2080 0.0371 (6) 0.0666 -0.0480 0.0264 (7) 0.0509 -0.0637 0.1122 (5) 0.0617 0.1770	0.1343 (4)0.6416 (4)0.09280.69080.20800.69430.0371 (6)0.6142 (7)0.06660.6569-0.04800.65150.0264 (7)0.4674 (7)0.05090.4442-0.06370.43890.1122 (5)0.3979 (5)0.06170.3446	0.1343 (4)0.6416 (4)0.1458 (3)0.09280.69080.10960.20800.69430.16220.0371 (6)0.6142 (7)0.2012 (3)0.06660.65690.2421-0.04800.65150.18960.0264 (7)0.4674 (7)0.2109 (4)0.05090.44420.2562-0.06370.3979 (5)0.1643 (3)0.06170.33770.13590.17700.34460.1882

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0700 (7)	0.0779 (9)	0.0711 (9)	-0.0235 (6)	0.0072 (8)	0.0036 (8)
N1	0.068 (3)	0.0344 (19)	0.067 (3)	-0.0143 (19)	0.000 (2)	-0.0021 (19)
N2	0.069 (2)	0.0250 (17)	0.068 (3)	-0.0104 (17)	-0.008 (2)	-0.0068 (17)
N3	0.077 (3)	0.0236 (18)	0.068 (3)	-0.0011 (16)	0.011 (2)	-0.0014 (18)
N4	0.070 (3)	0.034 (2)	0.068 (3)	0.0026 (17)	0.005 (2)	-0.0077 (19)
C1	0.050 (3)	0.029 (2)	0.042 (3)	-0.0022 (17)	-0.005 (2)	-0.0016 (18)
C2	0.065 (3)	0.026 (2)	0.057 (3)	0.000 (2)	0.003 (3)	0.0006 (19)
C3	0.057 (3)	0.032 (2)	0.058 (3)	0.005 (2)	-0.006 (3)	-0.0003 (19)
C4	0.050 (3)	0.046 (3)	0.052 (3)	-0.014 (2)	-0.010 (2)	0.005 (2)
C5	0.065 (3)	0.039 (3)	0.062 (3)	0.008 (2)	0.003 (3)	-0.002 (2)
C6	0.100 (4)	0.048 (3)	0.110 (5)	0.008 (3)	0.035 (4)	-0.016 (3)
C7	0.149 (7)	0.072 (4)	0.114 (6)	0.012 (4)	0.069 (5)	-0.006 (4)
C8	0.117 (6)	0.069 (4)	0.119 (6)	0.008 (3)	0.056 (5)	0.010 (4)
C9	0.069 (3)	0.051 (3)	0.053 (3)	-0.003 (2)	0.007 (3)	0.000 (2)
C12	0.0699 (7)	0.0664 (8)	0.0672 (8)	-0.0042 (6)	0.0083 (7)	-0.0049 (7)
N5	0.066 (3)	0.035 (2)	0.063 (3)	-0.0066 (17)	-0.002 (2)	0.0023 (17)
N6	0.061 (2)	0.0271 (18)	0.066 (2)	-0.0021 (16)	0.001 (2)	-0.0045 (17)
N7	0.061 (2)	0.0283 (18)	0.069 (3)	0.0018 (17)	0.006 (2)	-0.0037 (18)
N8	0.063 (2)	0.033 (2)	0.070 (3)	-0.0065 (18)	0.010 (2)	0.0003 (18)
C10	0.053 (3)	0.028 (2)	0.052 (3)	0.0021 (18)	-0.005 (2)	-0.001 (2)
C11	0.055 (3)	0.025 (2)	0.062 (3)	-0.0033 (18)	0.001 (3)	0.003 (2)
C12	0.055 (3)	0.026 (2)	0.058 (3)	-0.0014 (19)	-0.004 (3)	-0.0035 (19)
C13	0.052 (2)	0.039 (2)	0.048 (3)	-0.002 (2)	-0.008 (2)	-0.002 (2)
C14	0.056 (3)	0.045 (3)	0.059 (3)	-0.001 (2)	0.002 (3)	-0.004 (2)
C15	0.071 (3)	0.056 (3)	0.071 (3)	0.005 (2)	0.001 (3)	-0.015 (3)
C16	0.121 (5)	0.075 (5)	0.117 (6)	0.010 (4)	0.041 (5)	-0.012 (4)
C17	0.108 (5)	0.097 (5)	0.079 (5)	0.003 (4)	0.017 (4)	-0.008 (4)
C18	0.105 (4)	0.057 (3)	0.098 (5)	-0.006 (3)	0.044 (4)	0.006 (3)
Geometric param	neters (Å, °)					

Cl1—C4	1.732 (5)	Cl2—C13	1.730 (5)
N1—C4	1.299 (5)	N5—C13	1.306 (5)

N1—N2	1.357 (5)	N5—N6	1.342 (5)
N2—C1	1.333 (5)	N6—C10	1.317 (5)
N3—C1	1.351 (5)	N7—C10	1.362 (5)
N3—N4	1.370 (5)	N7—N8	1.377 (5)
N3—H3A	0.8600	N7—H7	0.8600
N4—C5	1.285 (6)	N8—C14	1.268 (5)
C1—C2	1.413 (5)	C10-C11	1.416 (5)
C2—C3	1.341 (6)	C11—C12	1.322 (6)
С2—Н2	0.9300	C11—H11	0.9300
C3—C4	1.402 (6)	C12—C13	1.397 (6)
С3—Н3	0.9300	C12—H12	0.9300
С5—С9	1.470 (6)	C14—C15	1.492 (6)
C5—C6	1.489 (6)	C14—C18	1.504 (7)
C6—C7	1.485 (8)	C15—C16	1.511 (7)
С6—Н6А	0.9700	C15—H15A	0.9700
С6—Н6В	0.9700	C15—H15B	0.9700
С7—С8	1.445 (7)	C16—C17	1.466 (9)
С7—Н7А	0.9700	C16—H16A	0.9700
С7—Н7В	0.9700	C16—H16B	0.9700
C8—C9	1.522 (8)	C17—C18	1.452 (8)
C8—H8A	0.9700	С17—Н17А	0.9700
С8—Н8В	0.9700	C17—H17B	0.9700
С9—Н9А	0.9700	C18—H18A	0.9700
С9—Н9В	0.9700	C18—H18B	0.9700
C4—N1—N2	120 7 (4)	C13—N5—N6	1196(3)
C1 - N2 - N1	120.7(4) 117.7(3)	C10-N6-N5	119.6 (3)
C1 = N2 = N4	120 1 (3)	C10-N7-N8	119.1 (3)
C1 = N3 = H3A	119.9	C10-N7-H7	120.5
N4N3H3A	119.9	N8-N7-H7	120.5
C_{5} N4 N3	116.3 (4)	C14—N8—N7	120.3 1177(4)
N_2 C_1 N_3	118.4 (3)	N6-C10-N7	117.7(1) 115.9(4)
$N_2 - C_1 - C_2$	122 4 (4)	N6-C10-C11	113.5(1) 121.7(4)
N3_C1_C2	122.4(4) 119.2(4)	N7-C10-C11	121.7(4) 1223(4)
C_{3}^{-} C_{2}^{-} C_{1}^{-}	119.2 (4)	$C_{12} - C_{11} - C_{10}$	122.5(4)
C_{3} C_{2} H_{2}	120.5	C12—C11—H11	120.7
C_{1} C_{2} H_{2}	120.5	C10_C11_H11	120.7
$C_1 = C_2 = C_1^2$	115.9 (4)	$C_{11} - C_{12} - C_{13}$	120.7
$C_2 = C_3 = C_4$	113.9 (4)	$C_{11} = C_{12} = C_{13}$	121.5
$C_2 = C_3 = H_3$	122.0	$C_{11} = C_{12} = H_{12}$	121.5
N1 C4 C3	122.0 124.2(4)	N5 C13 C12	121.5 123 5 (4)
N1 = C4 = C3	124.2(4) 116.7(3)	N5 C13 C12	123.3(4)
$C_{1}^{2} = C_{1}^{2} = C_{1}^{1}$	110.7(3)	(12) (13) (12)	110.3(3)
N4 C5 C9	119.1(4) 129.5(4)	N8 C14 C15	120.0(3)
N4_C5_C6	129.5(4) 110.9(4)	$N_{0} = C_{14} = C_{15}$	130.1(4)
$C_{0} = C_{0} = C_{0}$	119.9 (4)	10 - C14 - C10	120.0(4)
C_{-}	105.0(4)	C_{13} $-C_{14}$ $-C_{16}$ C_{14} $-C_{15}$ $-C_{16}$	107.5(4) 105.2(4)
C7C6H6A	105. .	C14_C15_H15A	105.2 (4)
C5_C6_H6A	110.7	C16_C15_H15A	110.7
C7 C6 H6B	110.7	C14 C15 H15R	110.7
	110./	UIT -UIJIIIJD	110.7

C5-C6-H6B	110.7	C16_C15_H15B	110.7
H6A—C6—H6B	108.8	H15A-C15-H15B	108.8
C8 - C7 - C6	109.9 (5)	C17 - C16 - C15	108.9 (5)
C8—C7—H7A	109.7	C17—C16—H16A	109.9
C6—C7—H7A	109.7	C15-C16-H16A	109.9
C8—C7—H7B	109.7	C17—C16—H16B	109.9
C6—C7—H7B	109.7	C15—C16—H16B	109.9
H7A - C7 - H7B	108.2	H_{16A} $-C_{16}$ $-H_{16B}$	108.3
C7 - C8 - C9	108.2 (5)	C_{18} C_{17} C_{16}	109.7 (5)
C7 - C8 - H8A	110.1	C18 - C17 - H17A	109.7
C9 - C8 - H8A	110.1	C16-C17-H17A	109.7
C7 - C8 - H8B	110.1	C18 - C17 - H17B	109.7
$C_{1} = C_{2} = H_{2}B_{1}$	110.1	C16—C17—H17B	109.7
	108.4	H17A_C17_H17B	109.7
10A - 00 - 10D	105.1 (4)	117 - 118 - 114	103.2
$C_{5} - C_{9} - H_{9}$	110.7	C17 - C18 - H18A	107.0 (3)
C_{3} C_{9} H_{9}	110.7	$C_{1/}$ C_{18} H_{18A}	110.3
C_{0}	110.7	C_{14} C_{10} H_{10} H_{10}	110.3
$C_{2} = C_{2} = C_{2} = C_{2}$	110.7	C1/-C18 $H18P$	110.3
	10.7		10.5
	108.8		108.0
C4—N1—N2—C1	1.3 (6)	C13—N5—N6—C10	-1.8 (6)
C1—N3—N4—C5	175.2 (4)	C10—N7—N8—C14	174.9 (4)
N1—N2—C1—N3	178.8 (4)	N5—N6—C10—N7	-179.1 (3)
N1—N2—C1—C2	-2.2 (6)	N5—N6—C10—C11	2.2 (6)
N4—N3—C1—N2	0.8 (6)	N8—N7—C10—N6	-177.4 (4)
N4—N3—C1—C2	-178.2 (4)	N8—N7—C10—C11	1.4 (6)
N2—C1—C2—C3	2.1 (6)	N6-C10-C11-C12	-1.0 (6)
N3—C1—C2—C3	-178.9 (4)	N7—C10—C11—C12	-179.7 (4)
C1—C2—C3—C4	-0.9 (6)	C10-C11-C12-C13	-0.4 (6)
N2—N1—C4—C3	-0.1 (6)	N6—N5—C13—C12	0.2 (6)
N2—N1—C4—C11	-180.0 (3)	N6—N5—C13—Cl2	-179.1 (3)
C2—C3—C4—N1	0.0 (6)	C11—C12—C13—N5	0.9 (6)
C2—C3—C4—Cl1	179.8 (3)	C11—C12—C13—Cl2	-179.8 (3)
N3—N4—C5—C9	-0.2 (7)	N7—N8—C14—C15	0.4 (7)
N3—N4—C5—C6	-179.5 (4)	N7—N8—C14—C18	-178.5 (4)
N4—C5—C6—C7	175.6 (6)	N8-C14-C15-C16	179.9 (5)
C9—C5—C6—C7	-3.9 (7)	C18—C14—C15—C16	-1.1 (6)
C5—C6—C7—C8	-1.7 (8)	C14—C15—C16—C17	0.7 (6)
C6—C7—C8—C9	6.3 (9)	C15-C16-C17-C18	0.0 (8)
N4—C5—C9—C8	-171.9 (6)	C16-C17-C18-C14	-0.6 (7)
C6—C5—C9—C8	7.5 (6)	N8—C14—C18—C17	-179.8 (5)
C7—C8—C9—C5	-8.4 (7)	C15—C14—C18—C17	1.1 (6)
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!$
C2—H2···N5 ⁱ	0.93	2.73	3.500 (6)	141
N3—H3A····N5 ⁱ	0.86	2.52	3.295 (5)	150

N3—H3A…N6 ⁱ	0.86	2.27	3.088 (5)	159
N7—H7····N1 ⁱⁱ	0.86	2.19	3.041 (5)	170
C12—H12····N4 ⁱⁱⁱ	0.93	2.55	3.323 (5)	140
Symmetry codes: (i) $-x+1$, $-y+1$, $z+1/2$; (ii) $-x+1/2$, $y+1$, $z-1/2$; (iii) $-x+1$, $-y$, $z-1/2$.				

